Abstract

The coated Z-scheme Pd-BaZrO3@WO3 composite as a new-type sonocatalyst with highly sonocatalytic performance is first constructed through sol-gel and hydro-thermal synthesis methods. The chemical configuration, structure and component are characterized by a series of characterization methods. The sonocatalytic degradation of diazinon as a model pollutant is studied to estimate the sonocatalytic performance of coated Z-scheme Pd-BaZrO3@WO3 composite. Some affecting factors such as Pd-BaZrO3 and WO3 mass proportions, ultrasonic (US) irradiation time, reusability and catalyst dosage are researched in detail through UV–vis spectra and gas chromatography (GC). The produced intermediates are detected in the degradation process of diazinon by using gas chromatography-mass spectrometer (GC–MS). The possible reaction mechanism of coated Z-scheme Pd-BaZrO3@WO3 sonocatalyst in sonocatalytic degradation process is also explored. Subsequently, the hydroxyl radicals (OH) and holes (h+) are discriminated to further elaborate the possible sonocatalytic mechanism. The experimental results manifest that the coated Z-scheme Pd-BaZrO3@WO3 sonocatalyst displays a preeminent sonocatalytic performance under ultrasonic irradiation because it can efficaciously suppress recombination of electrons (e−) and holes (h+), extend light response scope and provide almost 100% oxidization surface. In addition, the introduced palladium (Pd) nanorods connecting BaZrO3 and WO3 can expedite e− transfer. Under optimal conditions, the most of diazinon molecules can be disintegrated in the existence of the coated Z-scheme Pd-BaZrO3@WO3 under ultrasonic irradiation for 150 min. This study provides a feasible method for the treatment of environmental pollutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.