Abstract

N-ethylcarbazole/dodecahydro-N-ethylcarbazole (NEC/12H-NEC) is one of the most attractive LOHCs, and it is of great significance to develop catalysts with high activity and reduce the hydrogen storage temperature. Layered double hydroxides-carbon nanotubes composites (LDH-CNT) were synthesized by a simple in-situ assembly method. Due to the introduction of CNT, a strong interaction occurred between LDH and CNT, which effectively improved the electron transfer ability of LDH-CNT. Ru/LDH-CNT catalysts were prepared via ultrasound-assisted reduction method without adding reducing agents and stabilizers. Under the cavitation effect of ultrasound, the hydroxyl groups on the surface of LDH were excited to generate hydrogen radicals (•H) with high reducibility, which successfully reduced Ru3+ to Ru NPs. Ru/LDH-3.9CNT-(300-1) catalyst was of 1.63nm average Ru particle size with CNT amount of 3.9wt% and the ultrasonic power of 300W at 1h, and its electron transfer resistance was less than that of Ru/LDH-(300-1). The synergy of ultrafine Ru NPs and fast electron transfer made it exhibit exceptional catalytic performance in NEC hydrogenation. Even if the reaction temperature was lowered to 80°C, its hydrogenation performance was better than that of commercial Ru/Al2O3 catalyst at 120°C. The ultrasound-assisted method is efficient, green and environmentally friendly, and the operation process is simple and economical. It is expected to be used in practical industrial production, which provides a reference for the preparation of high-activity and low-temperature hydrogen storage catalysts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call