Abstract

N-Ethylcarbazole (NEC), as a promising liquid organic hydrogen carrier (LOHC), can store and release hydrogen through a reversible catalytic hydrogenation and dehydrogenation reaction. In this paper, RuPd bimetallic nanocatalyst supported on MgAl-layered double hydroxide (RuPd/LDH) was prepared by ultrasonic-assisted reduction method, and its catalytic performance in NEC hydrogenation was also studied. Under the action of ultrasound, hydroxyl groups (-OH) on the surface of LDH support dissociated into highly reductive hydrogen radicals for the reduction of Ru3+ and Pd2+ to Ru0 and Pd0. For the 4Ru1Pd/LDH-(300-1) catalyst prepared under ultrasonic conditions of 25 kHz, 300 W, and 1 h, the average size of the metal nanoparticles was only 1.23 nm, which indicated that Ru, Pd, and RuPd NPs were highly dispersed on the support. The strong electronic effects between Ru and Pd improved its catalytic performance in NEC hydrogenation. With m(Ru+Pd)/m(NEC) = 0.2wt%, pressure of 6 MPa, and temperature of 120 °C, the selectivity of dodecahydro-N-ethylcarbazole (12H-NEC) was 98.07%, and the capacity and percentage of hydrogen storage were 5.75wt% and 99.3%, respectively. After the catalyst was recycled 8 times, the percentage of hydrogen storage still reached 98.9%, showing higher stability. The preparation method is simple and environmentally friendly, providing an idea for the preparation of ultrafine bimetallic catalysts with high catalytic activity and stability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call