Abstract
A rapid and efficient ultrasound-assisted extraction (UAE) procedure followed by inductively coupled plasma mass spectrometry (ICP-MS) was developed for the determination of 14 rare earth elements (REEs) (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu), along with yttrium (Y) and scandium (Sc), in coffee samples. The method was validated using certified reference material (NIST SRM 1547), recovery tests at four fortification levels, and comparisons with microwave-assisted digestion (MAD). Excellent accuracy and precision were achieved, with recovery rates ranging from 80.1% to 112% and relative standard deviations (RSD%) below 14%. Limits of detection (LODs) ranged from 0.2 ng/kg (Yb) to 0.16 µg/kg (Nd). Total REE concentrations varied between 8.3 µg/kg and 1.1 mg/kg, with the highest individual mean concentrations (µg/kg) observed for Ce (11.7), La (6.0), and Sc (4.7). The lowest individual mean concentrations (µg/kg) were for Ho (0.16), Lu (0.066), and Tm (0.063). Multivariate analysis of REE profiles from 92 coffee samples collected in Serbia revealed clear distinctions between ground roasted and instant coffees, as well as between different surrogate blends. This study indicated that the determination of coffee’s geographical origin was not possible due to the diverse types, blends, and additives. However, differences in REE profiles suggest potential classification based on variety. REEs pose a negligible health risk to coffee consumers, with HI values ranging from 4.7 × 10−8 to 6.3 × 10−6 and TCR ranging from 2.6 × 10−14 to 3.5 × 10−12.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have