Abstract
The ultrasound assisted preparation of 1-(benzyloxy)-4-nitrobenzene from the reaction of 4-chloronitrobenzene (CNB) and benzyl alcohol was carried out successfully using potassium hydroxide and catalyzed by a new multi-site phase-transfer catalyst (MPTC) viz., 1,3,5-triethyl-1,3,5-trihexyl-1,3,5-triazinane-1,3,5-triium trichloride in a solid–liquid reaction condition (SL-MPTC). The advantage of using SL-MPTC is to avoid a serious hydration of potassium salt of benzyl alcohol in the reaction between 4-chloronitrobenzene (CNB) and benzyl alcohol. The reaction is greatly enhanced in the solid–liquid system, catalyzed by multi-site quaternary ammonium salt (MPTC) and ultrasound irradiation (40kHz, 300W) in a batch reactor, it shows that the overall reaction greatly enhanced with ultrasound irradiation than without ultrasound. The reaction mechanism is proposed and verified by examining the experimental evidence. A kinetic model is proposed in which a pseudo first-order rate law is sufficient to describe the results, such as the effects of agitation speed, ultrasound, different phase transfer catalysts and the effect of organic solvents, the amount of newly prepared MPTC, the effect of temperature, the amount of water, the concentration of 4-chloronitrobenzene (CNB) and potassium hydroxide concentrations. The apparent rate constant (kapp) were investigated in detail. Rational explanations to account for the phenomena on the results were made.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.