Abstract

Nomex honeycomb core materials have been widely used in the aviation industry due to their special structure and performance. Conventional high-speed machining have resulted in the poor machinability of the honeycomb core so that the ultrasonic machining technology was applied. The kinematic characteristics in the ultrasonic vibration assisted cutting process were analyzed according to the movement of the sharp tool. Based on slide effect, a cutting force model was proposed to study the relationship between cutting parameters and cutting force. Ultrasonic vibration assisted cutting and ordinary cutting tests of Nomex honeycomb core material were conducted by considering feed rate, the inclined angle and the deflected angle. Besides, the effects of cutting parameters on machined surface quality of honeycomb core wall were studied. The test results show that slide effect caused by ultrasonic vibrations can reduce cutting resistance compared with ordinary cutting. The developed cutting force model can be applied to evaluated the cutting force in the ultrasonic vibration assisted cutting of Nomex honeycomb core material. The inclined angle has a great influence on the cutting force during ultrasonic vibration assisted cutting. High-speed reciprocating sliding action can effectively cut aramid fibers so that burrs and tearing defects of the incision have been greatly improved under condition of ultrasonic vibration assisted cutting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.