Abstract

In this study, the potential application of copper nanowires loaded on activated carbon for simultaneous removal of Disulfine blue (DB), Crystal violet (CV) and Sunset yellow (SY) has been described. The relation between adsorption properties with variables such as solution pH, adsorbent value, contact time and initial dyes concentration was investigated and optimized. A three‐layer artificial neural network (ANN) model was utilized to predict dyes removal (%) by adsorbent following conduction of experiments. The training of network at above mention experimental data confirms its ability to forecast the removal performance with a linear transfer function (purelin) at output layer. The Levenberg–Marquardt algorithm and tangent sigmoid transfer function (tansig) with 16 neurons at the hidden layer was applied. Parameters were optimized by central composite design (CCD) combined with response surface methodology (RSM) and desirability function. The accuracy of ANN was judged according to both MSE and AAD% at optimal conditions and results indicate its superiority to RSM model in term of higher R2 and lower AAD% values. This observation was also corroborated by the parity plots between the predicted and experimental values. The ANN model was better in both data fitting and prediction capability in comparison to RSM model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.