Abstract

In this study, an artifi cial neural network (ANN) model was used to predict the extraction effi ciency of cobalt from biological and water samples by magnetic nanoparticles based on batch solid-phase extraction and inductively coupled plasma-optical emission spectrometry (ICP-OES). The effect of operational parameters, including solution pH, amounts of the complexing agent (1-(2-pyridylazo)-2-naphthol) and nanoparticles, and extraction time was studied. The parameters were optimized for the maximum extraction of cobalt ions. The optimum conditions were as follows: initial pH 11.0, contents of complexing agent and nanoparticles 0.75 mg/l and 125 mg, respectively, and extraction time 12.5 min. After backpropagation (BP) training, the ANN model was able to predict the extraction effi ciency of cobalt ions with a tangent sigmoid transfer function (tansig) at a hidden layer with 15 neurons and a linear transfer function (purelin) at an output layer. The Levenberg–Marquardt algorithm (LMA) was found as the best of 11 BP algorithms with a minimum mean squared error (MSE) of 0.009895. The linear regression between the corresponding targets and the network outputs was shown to be satisfactory with a correlation coeffi cient (R 2 ) of 0.978. Under optimum conditions, the detection limit (LOD) of this method was 7.0 ng/l, and the relative standard deviation (RSD%) was 2.1% (n = 10, c = 10 μg/l). The method of magnetic nanoparticles based on batch solidphase extraction was applied to the separation, pre-concentration, and determination of cobalt both in biological and water samples and in a certifi ed reference material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.