Abstract

It is shown that the role that an ultrasonic piezoelectric transducer plays in both generating and receiving ultrasound in an ultrasonic nondestructive evaluation (NDE) measurement system can be completely described in terms of the transducer's electrical impedance and open-circuit, blocked force receiving sensitivity. Furthermore, it is shown that both of these quantities can be obtained experimentally via a model-based approach and purely electrical measurements. The measurement of sensitivity uses a method originally developed for lower-frequency acoustic transducers. However, it is shown that at the higher frequencies found in ultrasonic NDE applications electrical cabling effects play an important role and must be compensated for in determining the transducer sensitivity. Examples of experimental measurement results using these new approaches are given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.