Abstract

This paper presents a method for ultrasonic sizing of surface cracks based on time domain and frequency domain Rayleigh wave near-field analysis. The procedure allows for the entire range of ratio of crack depth to Rayleigh wavelength a/ λ to be covered with one single measurement. In the time domain the time-of-flight method was extended to cracks smaller than the wavelength by correlation of the time delay of the transmitted Rayleigh wave with the crack depth. In the frequency domain, the inverse scattering problem was solved by comparison of the measured scattering coefficients and central frequencies of the reflected and transmitted Rayleigh waves with theoretical curves. The sizing procedure was demonstrated experimentally with narrow slots and real fatigue cracks. The out-of-plane displacement component was measured pointwise in the scattered near field by means of laser interferometry. The determination of the scattering parameters in the near field was enabled by a procedure that allows for the Rayleigh wave to be separated from the other modes scattered at the defect. The experimental results showed good accuracy and repeatability down to the smallest available ratio of crack depth to Rayleigh wavelength a/ λ = 0.15.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.