Abstract

Ultrasound imaging for bone is a difficult task in the field of medical ultrasound. Compared with other phase array techniques, the synthetic aperture (SA) has a better lateral resolution but a limited imaging depth due to the limited ultrasonic energy emitted by the single emitter in each transmission. In contrast, the virtual source (VS) synthetic aperture allows a simultaneous multi-element emission and could provide a higher ultrasonic incident energy in each transmission. Therefore, the VS might achieve a high imaging quality at a deeper depth for bone imaging than the traditional SA. In this study, we proposed the virtual source phase shift migration (VS-PSM) method to achieve ultrasonic imaging of the deeper bone defect featured in the multilayer structure. The proposed VS-PSM method was validated using standard soft tissue phantom and printed bone phantom with artificial defects. The image quality was evaluated in terms of contrast-to-noise ratios (CNR) and amplitudes of scatters and defects at different imaging depths. The results showed that the VS-PSM method could achieve a high imaging quality of the soft tissues with a significant improvement in the scattering amplitude and without a significant sacrifice of the lateral and axial resolution. The PSM was superior to the DAS in suppressing the background noise in the images. Compared with the traditional SA-PSM, the VS-PSM method could image deeper bone defects at different ultrasonic frequencies, with an average improvement of 50% in CNR. In conclusion, this study demonstrated that the proposed VS-PSM method could image deeper bone defects and might help the diagnosis of bone disease using ultrasonic imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.