Abstract

Inspired by the optical imaging algorithm, the Fourier Ptychography (FP) algorithm is adopted to improve the resolution of ultrasonic array imaging. In the FP algorithm, the steady-state spectrum is utilized to recover the high-resolution ultrasonic images. Meanwhile, the parameters of FP algorithm are empirical, which can affect the imaging quality of ultrasonic array. Then the particle swarm optimization (PSO) algorithm is used to optimize the parameters of FP algorithm to further improve the imaging quality of ultrasonic array. The tungsten imaging experiments and pig eye imaging experiments are conducted to demonstrate the feasibility and effectiveness of the developed algorithm. In addition, the proposed algorithm and the coherent wave superposition (CWS) algorithm are both based on single plane wave (SPW) algorithms and they are then compared. The results show that the CWS algorithm and FP algorithm have good longitudinal and lateral resolutions, respectively. The particle swarm optimization-based FP (PSOFP) imaging algorithm has both excellent lateral and longitudinal resolutions. The average lateral resolution of PSOFP imaging algorithm is improved by 34.47% compared with CWS imaging algorithm in the tungsten wires experiments, and the lateral boundary structure width of the lens is improved by 49.48% in the pig eye experiments. The proposed algorithm can effectively improve the ultrasonic imaging quality for medical application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call