Abstract

This article describes ultrasonic nondestructive evaluation (NDE) to detect the changes of material properties and provide early warning of delamination in thermal barrier coating (TBC) systems. NDE tests were performed on single-crystal Rene N5 superalloy coupons that were coated with a commercially available MCrAlY bond coat and an air plasma sprayed 7% yttria-stabilized zirconia (YSZ) top coat deposited by Air Plasma Spray method, as well as Haynes 230 superalloy coupons coated with MCrA1Y bond coat, and an electron beam physical vapor deposit of 7% YSZ top coat. The TBC coupons were subjected to either cyclic or isothermal exposure for various lengths of time at temperatures ranging from 900 to 1100 °C. The ultrasonic measurements performed on the coupons had provided an early warning of delamination along the top coat/TGO interface before exposure time, when delamination occurred. The material's property (Young’s modulus) of the top coat was estimated using the measured wave speeds. Finite element analysis (FEA) of the ultrasonic wave propagation was conducted on a simplified TBC system to verify experimental observations. The technique developed was also demonstrated on an as-manufactured turbine blade to estimate normalized top coat thickness measurements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call