Abstract

Use of ultrasound can yield polymer degradation as reflected by a significant reduction in the intrinsic viscosity or the molecular weight. The ultrasonic degradation of two water soluble polymers viz. carboxymethyl cellulose (CMC) and polyvinyl alcohol (PVA) has been studied in the present work. The effect of different operating parameters such as time of irradiation, immersion depth of horn and solution concentration has been investigated initially using laboratory scale operation followed by intensification studies using different additives such as air, sodium chloride and surfactant. Effect of scale of operation has been investigated with experiments in the available different capacity reactors with an objective of recommending a suitable type of configuration for large scale operation.The experimental results show that the viscosity of polymer solution decreased with an increase in the ultrasonic irradiation time and approached a limiting value. Use of additives such as air, sodium chloride and surfactant helps in increasing the extent of viscosity reduction. At higher frequency operation the viscosity reduction has been found to be negligible possibly attributed to less contribution of the physical effects. The viscosity reduction in the case of ultrasonic horn has been observed to be more as compared to other large capacity reactors. Kinetic analysis of the polymer degradation process has also been performed.The present work has enabled us to understand the role of the different operating parameters in deciding the extent of viscosity reduction in polymer systems and also the controlling effects of low frequency high power ultrasound with experiments on different scales of operation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.