Abstract

Ultrasonic parameters such as velocity of sound and broad-band ultrasonic attenuation (BUA) are sensitive to changes in the viscoelastic properties of a material. Bone cement undergoes changes is these properties as it cures. By monitoring the propagation of ultrasonic pulses through a sample of curing bone cement, the curing reaction of polymethylmethacrylate-based (PMMA) bone cement was investigated for hydroxyapatite (HA) concentrations of 0, 10, and 30% (by weight). As the material hardens, the velocity of sound increases by 70%. BUA shows a large peak at the midpoint of the velocity transition. These data are used to compare the cure time and cure duration for PMMA bone cement mixed with hydroxyapatite particles. Measurements of the final sound velocity and BUA were also performed to investigate the mechanical properties of the fully cured cement, and to compare to compression testing data. This is the first time the curing process of bone cement has been investigated as a function of hydroxyapatite concentration. Results indicate that the cure time is not significantly affected by the addition of HA particles, and that both velocity of sound and BUA are sensitive to the curing process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.