Abstract
Ultrasonic cavitation peening is a peening process utilizing the high pressure induced by ultrasonic cavitation in liquids (typically water). In this paper, ultrasonic cavitation peening on stainless steel and nickel alloy has been studied. The workpiece surface microhardness, the microhardness variation at different depths, the workpiece surface profile, roughness, and morphology have been measured or observed. It has been found that for the studied situations, ultrasonic cavitation peening (at a sufficiently high horn vibration amplitude) can obviously enhance the workpiece surface hardness without significantly increasing the surface roughness. Under the investigated conditions, a surface layer of more than around 50 μm has been hardened under a horn vibration amplitude of ∼20 μm.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have