Abstract
Underground mining involves numerous risks, such as collapses, gas leaks, and explosions, posing significant threats to worker safety. In this work, we develop an indoor localization system that uses Bluetooth for coarse positioning and ultrasonic arrays for precision calibration. This system is particularly useful for automated mining operations in underground environments where satellite positioning signals are unavailable. The indoor localization system consists of ultrasonic receiver arrays and an improved multi-transmitter-multi-receiver algorithm, enabling accurate localization within the mining environment. Geometric Dilution of Precision (GDOP) analysis is incorporated to optimize the network layout, and an inertial navigation module is integrated to track the posture of moving objects, enabling precise trajectory determination over large areas, such as coal mines. In the experiment, three traditional methods were compared, and the proposed tracking approach demonstrated a positioning accuracy within 10 cm, reducing error by 20% compared to conventional techniques. This high-precision indoor localization method proves beneficial for underground mining applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.