Abstract

Acoustic agglomeration is a technique that leverages on sound waves to promote the collision of aerosol particulate matter, thus leading to the formation of larger particle agglomerates. In this study, this acoustics-driven phenomenon is demonstrated for its usefulness as an aerosol pre-conditioning method to significantly enhance the efficiency of filtration systems in particle treatment processes. Specifically, favorable changes in pressure drop across the filters are observed as a result of receiving less particle mass, for which filters are shown to be able to have their operational life extended remarkably by more than 50%. The involved ultrasonic aerosol agglomeration mechanisms are unveiled through numerical simulations, and the effects of residence time, sound pressure level, and initial particle number concentration on agglomeration performances are experimentally investigated. In addition, validations and measurements of filter pressure drop are obtained through a series of experiments. This study provides a comprehensive overview to the design and performance characterization of acoustics-agglomeration-enhanced filtration systems, which could potentially derive energy savings for fan power in ventilation systems and be scaled up for applications in industrial plants for reducing carbon emissions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.