Abstract

We formulate and characterize silicone gels near the gelation threshold with tunable refractive index, 1.4 < n < 1.49, and small viscoelastic moduli, G'∼1 Pa, for use in traction force microscopy. The near-critical gels have low-frequency storage plateau moduli between 50 Pa and 1 Pa, with loss moduli that are more than fifty times lower at low frequencies. The gels are linearly elastic up to strains of at least 50%. The refractive index of the gel is tuned to eliminate spherical aberrations during confocal imaging thereby minimizing signal loss when imaging through thick gel substrates. We also develop an index-matched colloidal particle, stabilized by a silicone brush, that can be dispersed throughout the gel. These particles can be used to determine the deformation of the gel. The combination of mechanical and optical properties of these near-critical gels extends the lower limit of stresses that can be measured with traction force microscopy to single mPa values, while minimizing optical aberrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.