Abstract
Herein, ultrasoft and ultrastretchable wearable strain sensors enabled by liquid metal fillers in an elastic polymer are described. The wearable strain sensors that can change the effective resistance upon strains are prepared by mixing silicone elastomer with liquid metal (EGaIn, Eutectic gallium-indium alloy) fillers. While the silicone is mixed with the liquid metal by shear mixing, the liquid metal is rendered into small droplets stabilized by an oxide, resulting in a non-conductive liquid metal elastomer. To attain electrical conductivity, localized mechanical pressure is applied using a stylus onto the thermally cured elastomer, resulting in the formation of a handwritten conductive trace by rupturing the oxide layer of the liquid metal droplets and subsequent percolation. Although this approach has been introduced previously, the liquid metal dispersed elastomers developed here are compelling because of their ultra-stretchable (elongation at break of 4000%) and ultrasoft (Young’s modulus of <0.1 MPa) mechanical properties. The handwritten conductive trace in the elastomers can maintain metallic conductivity when strained; however, remarkably, we observed that the electrical conductivity is anisotropic upon parallel and perpendicular strains to the conductive trace. This anisotropic conductivity of the liquid metal elastomer film can manipulate the locomotion of a robot by routing the power signals between the battery and the driving motor of a robot upon parallel and perpendicular strains to the hand-written circuit. In addition, the liquid metal dispersed elastomers have a high degree of deformation and adhesion; thus, they are suitable for use as a wearable sensor for monitoring various body motions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.