Abstract
Intrinsic motions may allow HIV-1 transactivation response (TAR) RNA to change its conformation to form a functional complex with the Tat protein, which is essential for viral replication. Understanding the dynamic properties of TAR necessitates determining motion on the intermediate nanosecond-to-microsecond time scale. To this end, we performed solid-state deuterium NMR line-shape and T1Z relaxation-time experiments to measure intermediate motions for two uridine residues, U40 and U42, within the lower helix of TAR. We infer global motions at rates of ∼105 s-1 in the lower helix, which are much slower than those in the upper helix (∼106 s-1), indicating that the two helical domains reorient independently of one another in the solid-state sample. These results contribute to the aim of fully describing the properties of functional motions in TAR RNA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.