Abstract

Small molecules that bind to RNA potently and specifically are relatively rare. The study of molecules that bind to the HIV-1 transactivation response (TAR) hairpin, a cis-acting HIV genomic element, has long been an important model system for the chemistry of targeting RNA. Here we report the synthesis, biochemical, and structural evaluation of a series of molecules that bind to HIV-1 TAR RNA. A promising analogue, 15, retained the TAR binding affinity of the initial hit and displaced a Tat-derived peptide with an IC50 of 40 μM. NMR characterization of a soluble analogue, 2, revealed a noncanonical binding mode for this class of compounds. Finally, evaluation of 2 and 15 by selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) indicates specificity in binding to TAR within the context of an in vitro-synthesized 365-nt HIV-1 5'-untranslated region (UTR). Thus, these compounds exhibit a novel and specific mode of interaction with TAR, providing important suggestions for RNA ligand design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call