Abstract

Intrinsic motions may allow HIV-1 transactivation response (TAR) RNA to change its conformation to form a functional complex with the Tat protein, which is essential for viral replication. Understanding the dynamic properties of TAR necessitates determining motion on the intermediate nanosecond-to-microsecond time scale. To this end, we performed solid-state deuterium NMR line-shape and T1Z relaxation-time experiments to measure intermediate motions for two uridine residues, U40 and U42, within the lower helix of TAR. We infer global motions at rates of ∼105 s-1 in the lower helix, which are much slower than those in the upper helix (∼106 s-1), indicating that the two helical domains reorient independently of one another in the solid-state sample. These results contribute to the aim of fully describing the properties of functional motions in TAR RNA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call