Abstract

In times of digitalization, multilayer composite materials became central components in an increasing number of application fields. Thus, there is a need for optimization of the cost-intensive and time-consuming processing of multilayer composites. In this contribution, an ultrashort pulse laser-based method is presented for precise and flexible ablation of a printed circuit board base material. Therefore, an 800 nm Gaussian laser beam was transformed into a Bessel beam by an axicon to get a small spot size and an ablation result with a high aspect ratio. The influence of the average laser power, the number of exposure cycles, and the pulse duration on the geometry as well as the surface quality of ablated structures was investigated and compared to Gaussian beam ablation. Furthermore, it is shown that the results can be transferred to microdrilling processes. With the presented method, it was possible to ablate the copper top layer of the printed circuit boards as well as the FR4 layer below with a precisely adjustable depth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call