Abstract

High performance with lower power consumption is one among the essential features of a sensing device. Minute traces of hazardous gases such as NO2 are difficult to detect. Tin disulfide (SnS2) nanosheets have emerged as a promising NO2 sensor. However, their poor room-temperature conductivity gives rise to inferior sensitivity and sluggish recovery rates, thereby hindering their applications. To mitigate this problem, we present a low-cost ultrasensitive NO2 gas sensor with tin disulfide/multiwalled carbon nanotube (SnS2/MWCNT) nanocomposites, prepared using a single-step hydrothermal method, as sensing elements. Relative to pure SnS2, the conductivity of nanocomposites improved significantly. The sensor displayed a decrease in resistance when exposed to NO2, an oxidizing gas, and exhibited p-type conduction, also confirmed in separate Mott-Schottky measurements. At a temperature of 20 °C, the sensor device has a relative response of about ≈5% (3%) for 25 ppb (1 ppb) of NO2 with complete recovery in air (10 min) and excellent recovery rates with UV activation (0.3 min). A theoretical lower limit of detection (LOD) of 7 ppt implies greater sensitivity than all previously reported SnS2-based gas sensors, to the best of our knowledge. The improved sensing characteristics were attributed to the formation of nano p-n heterojunctions, which enhances the charge transport and gives rise to faster response. The composite sensor also demonstrated good NO2 selectivity against a variety of oxidizing and reducing gases, as well as excellent stability and long-term durability. This work will provide a fresh perspective on SnS2-based composite materials for practical gas sensors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call