Abstract

An ultrasensitive refractive index (RI) sensor based on enhanced Vernier effect is proposed, which consists of two cascaded fiber core-offset pairs. One pair functions as a Mach-Zehnder interferometer (MZI), the other with larger core offset as a low-finesse Fabry-Perot interferometer (FPI). In traditional Vernier-effect based sensors, an interferometer insensitive to environment change is used as sensing reference. Here in the proposed sensor, interference fringes of the MZI and the FPI shift to opposite directions as ambient RI varies, and to the same direction as surrounding temperature changes. Thus, the envelope of superimposed fringe manifests enhanced Vernier effect for RI sensing while reduced Vernier effect for temperature change. As a result, an ultra-high RI sensitivity of -87261.06 nm/RIU is obtained near the RI of 1.33 with good linearity, while the temperature sensitivity is as low as 204.7 pm/ °C. The proposed structure is robust and of low cost. Furthermore, the proposed scheme of enhanced Vernier effect provides a new perspective and idea in other sensing field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.