Abstract

A surface atomic‐ligand exchange method is applied the first time in the construction of photodetectors (PDs) based on PbS quantum dots (QDs) for ultrasensitivity. The device thus produces a high photosensitivity to visible and near‐infrared light with a photoresponsivity up to 7.5 × 103 A W−1 and a high stability in air. In particular, these PbS‐QD‐based PDs show the capability of following a pulse light with a frequency up to 100 kHz well at a relatively fast response time/recovery time of ≈4/40 μs, much faster than most previous QD‐based PDs. The short response time is attributed to modification for the surface of the PbS‐QDs by cetyltrimethylammonium bromide treatment, which effectively improves the contact between the QDs and the Au electrodes, leading to extracting a high carrier mobility (≈0.142 cm2 V−1 s−1). These findings show the great potential of PbS‐QDs as high‐speed nano‐photodetectors, and, more importantly, demonstrate the importance of the surface atomic‐ligand exchange method in the construction of QD‐based devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.