Abstract

We theoretically show that a magnet can be stably levitated on top of a punctured superconductor sheet in the Meissner state without applying any external field. The trapping potential created by such induced-only superconducting currents is characterized for magnetic spheres ranging from tens of nanometers to tens of millimeters. Such a diamagnetically levitated magnet is predicted to be extremely well isolated from the environment. We therefore propose to use it as an ultrasensitive force and inertial sensor. A magnetomechanical read-out of its displacement can be performed by using superconducting quantum interference devices. An analysis using current technology shows that force and acceleration sensitivities on the order of $10^{-23}\text{N}/\sqrt{\text{Hz}}$ (for a 100 nm magnet) and $10^{-14}g/\sqrt{\text{Hz}}$ (for a 10 mm magnet) might be within reach in a cryogenic environment. Such unprecedented sensitivities can be used for a variety of purposes, from designing ultra-sensitive inertial sensors for technological applications (i.e. gravimetry, avionics, and space industry), to scientific investigations on measuring Casimir forces of magnetic origin and gravitational physics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call