Abstract

In the last few decades, a number of technological developments have advanced the spread of wearable sensors for the assessment of human motion. These sensors have been also developed to assess athletes' performance, providing useful guidelines for coaching, as well as for injury prevention. The data from these sensors provides key performance outcomes as well as more detailed kinematic, kinetic, and electromyographic data that provides insight into how the performance was obtained. From this perspective, inertial sensors, force sensors, and electromyography appear to be the most appropriate wearable sensors to use. Several studies were conducted to verify the feasibility of using wearable sensors for sport applications by using both commercially available and customized sensors. The present study seeks to provide an overview of sport biomechanics applications found from recent literature using wearable sensors, highlighting some information related to the used sensors and analysis methods. From the literature review results, it appears that inertial sensors are the most widespread sensors for assessing athletes' performance; however, there still exist applications for force sensors and electromyography in this context. The main sport assessed in the studies was running, even though the range of sports examined was quite high. The provided overview can be useful for researchers, athletes, and coaches to understand the technologies currently available for sport performance assessment.

Highlights

  • Recent statistics showed that about 50% of the European population performs a sport activity at least once a week starting from 15 years old [1]

  • Wearable sensors allow the sporting activity to be performed in the natural environment, overcoming the environment limitation of laboratory testing, such as the use of the optoelectronic 3D system that is still considered the gold standard for movement analysis [11, 12]

  • This is demonstrated by a simple search on Scopus using the keywords “sports” and “inertial sensors” that identified a total of 37 articles published in January to May 2020, a value that is identical to the number of articles found using the same search terms over the period 2004-2009

Read more

Summary

Introduction

Recent statistics showed that about 50% of the European population performs a sport activity at least once a week starting from 15 years old [1]. The 3D optoelectronic-based methodologies still have several limitations for widespread use in sport, such as difficulties in analysing human movement in outdoor environments, the time spent and the skills needed for the subjects’ sensorization and the limited calibration volume in which the analyses can be performed [8]. Sport biomechanics is, generally, performed by using wearable sensors that allow ensuring noninvasive data acquisition during the execution of movements [11]. Wearable sensors allow the sporting activity to be performed in the natural environment, overcoming the environment limitation of laboratory testing, such as the use of the optoelectronic 3D system that is still considered the gold standard for movement analysis [11, 12]. One promising direction in wearable sensor use is real-time biofeedback systems [138] that can offer concurrent augmented feedback information to athletes and/or coaches [7, 139,140,141,142]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call