Abstract
The impact of uncontrolled antibiotic use in animals has subsequently led to emergence of antibiotic-resistant bacteria among humans due to consumption of animal by-products. Hence, to investigate antibiotic contamination in animal origin food products, we have developed a reduced graphene oxide (rGO) based immunosensor using fabricated electrode conjugated with anti-Penicillin antibody (rGO/Pen-Ab) for sensitive detection of Penicillin G. To execute this, Penicillin was first conjugated with Bovine Serum Albumin (BSA) which was confirmed via chromatographic, spectroscopic and electrophoretic-based techniques against both the in-house developed Penicillin conjugate (Pen-BSA) as well as the commercial Penicillin conjugate (Com-Pen-BSA). Further, we fabricated electrode based on one step synthesized rGO and immobilized with antibodies generated against Pen-BSA (Pen-Ab), and Com-Pen-BSA (Com-Pen-Ab), separately for detection of Penicillin. Each synthesis and conjugation step was confirmed by different spectroscopic methods. For efficient working of the electrode, various parameters were optimized using Voltammetry. The limit of detection for Penicillin G against Pen-Ab and Com-Pen-Ab was determined as 0.724 pM and 0.668 pM respectively and both displayed negligible cross reactivity against other β-lactam antibiotics (Cefalexin and Ampicillin). Furthermore, antibiotics were also detected in spiked milk, egg and meat samples and the electrode was evaluated for repeatability and storage stability. In conclusion, in-house developed Pen-Ab showed better sensitivity as compared to Com-Pen-Ab. The fabricated rGO/Pen-Ab biosensor shows future potential for rapid detection of penicillin and other β-lactam antibiotics for safe consumption of animal by-products in humans.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have