Abstract

An electrochemical sensor was developed for the detection of hydrogen peroxide (H2O2),utilizing the synergistic effects of graphene (Gr) and MOF-on-MOF nanozymes (FeCu-NZs). Initially, Fe-MOF with peroxide-like activity is synthesized using a solvothermal method. Subsequently, the organic ligand on its surface binds Cu2+, enhancing the enzyme-like activity further. The resulting FeCu-NZs exhibit a distinctive electrochemical signal in response to H2O2. Moreover, integrating FeCu-NZs with Gr significantly amplifies the electrochemical signal and effectively reduces the sensor's detection limit. The developed sensor exhibited linear ranges of 0.1-3800 μM, with a limit of detection (LOD) of 0.06 μM. Additionally, FeCu-NZs catalyze H2O2 to generate abundant •OH radicals, and colorimetric detection of H2O2 is facilitated using the color rendering principle of 3,3',5,5'-tetramethylbenzidine (TMB). Notably, this detection method was applied to determine H2O2 concentrations in real samples, achieving a recovery exceeding 95.7%. In summary, this research provides a practical platform for the construction of traditional nanozymes and the integration of electrochemical systems, which have broad applications in food analysis, environmental monitoring, and medical diagnosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.