Abstract
The rapid and sensitive quantification of low-abundance protein markers holds immense significance in early disease diagnosis and treatment. Single-molecule fluorescence imaging exhibits very high detection sensitivity and thus has great application potential in this area. The single-molecule signal, however, is often susceptible to interference from background noise due to its inherently weak intensity. A variety of signal amplification techniques based on cascading reactions have been developed to improve the signal-to-noise ratio of single-molecule imaging. Nevertheless, the operation of these methods is typically complicated and time-consuming, which limits the clinical application. Herein, we introduce an enzyme-free, photonic-crystal-based single-molecule (PC-SM) biochip for cost-effective, time-efficient, and ultrasensitive detection of disease markers. The PC-SM biochip can enhance the signal-to-noise ratio of single molecules by nearly 3-fold compared with unamplified samples, through coupling of the single-molecule photon energy with the optical band gap of the photonic crystal. We used the PC-SM biochip to detect the low-abundance leukemia inhibitory factor in the blood of pancreatic cancer patients and healthy people and achieved a detection limit of 2.0 pg/L and an AUC of 0.9067. The method exhibits exceptional sensitivity and specificity, showing great application potential in various clinical settings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.