Abstract

Di(2-ethylhexyl) phthalate (DEHP) is an endocrine-disrupting chemical that induces numerous health problems when present in the human body in trace amounts. Therefore, for the simple and highly sensitive monitoring of migrated DEHP from daily-use plastic products into water sources, a gold-nanoflowers (AuFs)-structured electrochemical aptasensor was designed in this study. The morphologies of the well-defined AuFs-modified electrodes were investigated and the refined surface indicated enhanced electrochemical properties. DEHP was captured using methylene-blue (MB)-conjugated aptamer immobilized onto the AuFs-structured surface. The devised sensing platform exhibited a low detection limit (2.3 × 10−2 pg/mL) and a broad dynamic range (0.5 × 100 to 1 × 106 pg/mL). As a proof of concept, the designed aptasensor was successfully utilized as a monitoring tool to detect DEHP migration from plastic products, analyzing the migrated DEHP levels between 2.76 × 102 and 7.75 × 103 pg/mL. Furthermore, human exposure risk assessment via drinking water for ten items revealed that the carcinogenic risk values of four products exceeded the acceptable level, indicating the vulnerability of human health to even trace amounts of short-term-migrating DEHP. Consequently, our aptasensor shows tremendous potential for monitoring DEHP migrated from real samples with the reliable performance and the high sensitivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.