Abstract

In this work, a p-type 2D SnS nanofilm containing both laterally and vertically aligned components was successfully deposited on an n-type Si substrate through pulsed-laser deposition. Energy band analysis demonstrates a typical type-II band alignment between SnS and Si, which is beneficial to the separation of photogenerated carriers. The as-fabricated p-SnS/n-Si heterojunction photodetector exhibits multicolor photoresponse from ultraviolet to near-infrared (370-1064 nm). Importantly, the device manifests a high responsivity of 273 A/W, a large external quantum efficiency of 4.2 × 104%, and an outstanding detectivity of 7× 1013 Jones (1 Jones = 1 cm Hz1/2 W-1), which far outperforms state-of-the-art 2D/3D heterojunction photodetectors incorporating either laterally or vertically aligned 2D layered materials (2DLMs). The splendid performance is ascribed to lateral SnS's dangling-bond-free interface induced efficient carrier separation, vertical SnS's high-speed carrier transport, and collision ionization induced carrier multiplication. In sum, the current work depicts a unique landscape for revolutionary design and advancement of 2DLM-based heterojunction photodetectors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.