Abstract

Single-point diamond turning (SPDT) assisted with slow tool servo (STS) is the most commonly utilized technique in the fabrication of optical modules. However, the tool path significantly affects the quality of the machined surface. In order to realize the determined machining accuracy effectively, a tool path generation (TPG) method based on machining accuracy active control (MAAC) is presented. The relationship between tool path and machining error is studied. Corner radius compensation (CRC) and the calculation of chord error and residual error are detailed. Finally, the effectiveness of the proposed approach is verified through a machining error simulation and a cutting experiment of a complex sinusoidal mesh surface fabrication.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.