Abstract

We propose and analyze a counterpropagating cladding mode assisted tunable frequency Fabry-Perot interferometer formed by a Bragg grating (BG) cavity in a liquid crystal coated planar optical waveguide. A full vector modal analysis has been used to obtain the transmission spectra of the individual Bragg reflectors, and the cavity effects have been incorporated by employing a suitable phase matrix. We show that the cavity resonances that appear from two fiber BGs forming a resonator can be efficiently explained by incorporating appropriate phase shifts in one BG grating period. We further show that utilizing the cladding mode evanescent field, a liquid crystal overlay can be used to tune the cavity resonance over the entire free-spectral range of the cavity transmission spectra. Our study should find application in designing highly tunable integrated optical Fabry-Perot interferometers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.