Abstract

In this paper, an ultra-low power analog-to-digital converter (ADC) is proposed which is working based on level-crossing sampling. Level-crossing sampling is a data-compression technique utilizing specially for low-power implementation of biomedical signal acquisition systems. Despite the non-uniform nature of level-crossing sampling, the proposed ADC is implemented synchronously which leads to much lower power consumption and improved reliability. Accuracy of the ADC is improved by using a modified structure for dynamic comparators. A low-cost tuning circuit is also proposed for canceling a great portion of the background noise, which leads to a more efficient compression. The ADC is designed for ECG signal acquisition and implemented in 0.18 μm CMOS technology which consumes an ultra low power of 28 nW for 1.8 V supply voltage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.