Abstract

We use a charge coupled device (CCD) camera and a multi-tau software correlator to measure dynamic light scattering (DLS) at many angles simultaneously, from 0.07° to 5.1°. Real-time autocorrelation functions are calculated by averaging both over time and over CCD pixels, each corresponding to a different coherence area. In order to cover the wide spectrum of decay times associated with the large range of accessible angles, we adopt the multitau scheme, where the correlator channel spacing is quasilogarithmic rather than linear. A detailed analysis is presented of the effects of dark noise, stray light, and finite pixel area, and methods to correct the data for these effects are developed, making a CCD camera a viable alternative for a DLS detector. We test the apparatus on a dilute suspension of colloidal particles. Very good agreement is found between the particle radius derived from the CCD data, and that obtained with a conventional DLS setup.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.