Abstract
Grating couplers that interconnect photonic chips to off-chip components are crucial for various optoelectronics applications. Despite numerous efforts in past decades, the existing grating couplers are still far from optimal in energy efficiency and thus hinder photonic integration toward a larger scale. Here, we propose a strategy to achieve ultralow-loss grating couplers by using unidirectional guided resonances (UGRs), suppressing the useless downward radiation with no mirror on the bottom. By engineering the dispersion and apodizing the geometry of grating, we experimentally realize a grating coupler with a record-low loss of -0.34 dB and 1-dB bandwidth exceeding 30 nm at the telecom wavelength of 1550 nm and further demonstrate an optic via with a loss of only -0.94 dB. Given that UGRs ubiquitously exist in a variety of grating geometries, our work sheds light on a systematic method to achieve energy-efficient optical interconnect and paves the way to large-scale photonic integration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.