Abstract

AbstractThe implementation of ultralow dielectric constant (k value ≈ 2) materials to reduce signal propagation delay in advanced electronic devices represents a critical challenge in next generations of microelectronics technologies. The introduction of well‐stacked and low polarity molecules that do not compromise film density may lead to improvements and desirable material engineering, as conventional porous SiOx derivatives exhibit detrimental degradation of thermo‐mechanical properties when their k values are further scaled down. This work presents a systematic engineering approach for controlling ultralow‐k amorphous boron nitride (aBN) deposition on 300 mm Si platforms. The results indicate that aBN grown from borazine precursor exhibits ultralow dielectric constant ≈2, high density, excellent mechanical strength, and extended thermodynamic stability. Unintentional boron ion doping during plasma dissociation that may induce artificial reductions of k value on n‐type substrates is alleviated by employing a remote microwave plasma process. Moreover, the adoption of low growth rate processes for ultralow‐k aBN deposition is found to be critical to provide for the superior mechanical strength and high density, and is attributed to the formation of hexagonal ring stacking frameworks. These results pave the way and offer engineering solutions for new ultralow‐k material introduction into future semiconductor manufacturing applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.