Abstract

Ultrathin Si oxynitride films grown by low-temperature remote plasma processing were examined by on-line Auger electron spectroscopy and angle-resolved x-ray photoelectron spectroscopy to determine the concentration, spatial distribution, and chemical bonding of nitrogen. The films were grown at 300 °C on Si(100) substrates using two radio-frequency remote plasma processes: (i) He/N2O remote plasma-assisted oxidation (RPAO) and (ii) two-step remote plasma oxidation/nitridation. A 5 min He/N2O RPAO process produces a 2.5 nm oxynitride film incorporating approximately 1 monolayer of nitrogen at the Si–SiO2 interface. The interfacial nitrogen is bonded in a N–Si3 configuration, as in silicon nitride (Si3N4). By comparison, a 90 s He/N2 remote plasma exposure of a 1 nm oxide (grown by 10 s He/O2 RPAO) consumes substrate Si atoms creating a 1 nm subcutaneous Si3N4 layer. The nitrogen areal density obtained via the two-step process depends on the initial oxide thickness and the He/N2 remote plasma exposure time. Moreover, as the oxide thickness is increased (by increasing the He/O2 remote plasma exposure), the nitrogen distribution shifts away from the Si–SiO2 interface and into the oxide. More nitrogen with a tighter distribution is incorporated using He versus Ar dilution. Insight into the remote plasma chemistry was provided by optical emission spectroscopy. Strong N2 first positive and second positive emission bands were observed for He/N2O and He/N2 remote plasmas indicating the presence of N2 metastables and ground-state N atoms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call