Abstract
Controllable and efficient construction of oxygen vacancies on the surface of metal oxide semiconductors (MOSs) is essential for their application in the gas sensor. Herein, a general H2 reduction method is developed to synthesize SnO2 with oxygen vacancies defect (SnO2-D) by annealing the SnO2 in a H2 atmosphere at different temperature (300 °C, 400 °C and 500 °C), and then named SnO2-D3, SnO2-D4 and SnO2-D5, respectively. It was found that although the determined specific surface areas for pristine SnO2, SnO2-D3, SnO2-D4 and SnO2-D5 are 103.749 m2g−1, 63.316 m2g−1, 47.652 m2g−1 and 15.541 m2g−1, respectively, the gas sensitivity test results indicate that the SnO2-D4 Micro-Electro-Mechanical System (MEMS) sensor shows improved response and excellent low-concentration detection capability (down to 0.1 ppm) to H2 compared with that fabricated with pristine SnO2, SnO2-D3 and SnO2-D5. The abnormal relationship between specific surface area and gas sensing performance is attributed to the more oxygen vacancies of SnO2-D4 surface. In addition, ZnO (ZnO-D) and In2O3 (In2O3-D) with oxygen vacancy defects based on the H2 reduction method show better gas sensitivity than ZnO and In2O3 sensors, which further proves that oxygen vacancy defects can effectively improve the gas-sensing performance of MOSs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.