Abstract

We predict that ultralong-range Rydberg bimolecules form in collisions between polar molecules in cold and ultracold settings. The interaction of Λ-doublet nitric oxide (NO) with long-lived Rydberg NO(nf, ng) molecules forms ultralong-range Rydberg bimolecules with GHz energies and kilo-Debye permanent electric dipole moments. The Hamiltonian includes both the anisotropic charge-molecular dipole interaction and the electron-NO scattering. The rotational constant for the Rydberg bimolecules is in the MHz range, allowing for microwave spectroscopy of rotational transitions in Rydberg bimolecules. Considerable orientation of NO dipole can be achieved. The Rydberg molecules described here hold promise for studies of a special class of long-range bimolecular interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call