Abstract

Highly mesoporous ZnO and γ-Al2O3 nanowires (NWs) are both synthesized by a hydrothermal method using commercially available porous anodic aluminium oxide (AAO) as template. AAO membrane acts as template for ZnO NWs and both as template and precursor for γ-Al2O3 NWs. The formation of intermediate phases of porous Zn6Al2(OH)16CO3 and boehmite (γ-AlOOH) were observed, both occurring during the hydrothermal synthesis of porous ZnO and γ-Al2O3 NWs, respectively, and disappearing after annealing at 600 °C. This novel template-assisted hydrothermal process leads to the formation of porous ZnO and γ-Al2O3 NWs (specific surface area of 192 m2 g−1 and 263 m2 g−1, respectively), showing pore sizes around 4 nm in diameter. The influence of the reaction parameters on the nanostructure morphology was also investigated. A ZnO seed layer, deposited on the AAO channels prior to the hydrothermal synthesis, leads to more compact ZnO nanowires (99 m2 g−1) protecting the AAO host from the chemical attack of the precursor solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.