Abstract

Powerful chromatographic techniques are required for lipidomic analyses due to the extreme complexity of natural lipidomes. In the past few years, ultrahigh-performance supercritical fluid chromatography (UHPSFC) has proven to be a good alternative to conventional LC methods for comprehensive lipidomic analysis. The goal of this work was to study UHPSFC intraclass separation of lipids according to the fatty acyl composition. The effects of column chemistry, mobile phase composition and gradient, flow rate, back pressure, temperature, and column coupling on intraclass separation of lipids were widely investigated and discussed. In general, UHPSFC exhibited interclass selectivity together with intraclass separation of lipids according to their total number of double bonds and acyl chain lengths. Moreover, separations of diacylglycerol and lysophosphatidylcholines regioisomers were achieved in some cases. The nature of the stationary phase showed the most prominent effect on UHPSFC intraclass selectivity, while other chromatographic conditions were used for partial improvement in resolution of lipid species. An octadecyl-based stationary phase showed excellent separation of nonpolar lipid species, including triacylglycerol isobars; however, it provided poor peak shapes and limited retention time reproducibility for polar lipids. Diol- and 1-aminoanthracene-based columns provided the best inter- and intraclass resolution of most lipids. The main benefit for UHPSFC separation of complex lipid samples is the combination of the acyl chain/double bond intraclass separation of lipids with excellent lipid class selectivity, which can facilitate mass spectrometry detection and quantitation of trace species without ion suppression effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call