Abstract
Supermacroporous composite cryogels with enhanced adjustable functionality have received extensive interest in bioseparation, tissue engineering, and drug delivery. However, the variations in their components significantly impactfinal properties. This study presents a two-step hybrid machine learning approach for predicting the properties of innovative poly(2-hydroxyethyl methacrylate)-poly(vinyl alcohol) composite cryogels embedded with bacterial cellulose (pHEMA-PVA-BC) based on their compositions. By considering the ratios of HEMA (1.0–22.0 wt%), PVA (0.2–4.0 wt%), poly(ethylene glycol) diacrylate (1.0–4.5 wt%), BC (0.1–1.5 wt%), and water (68.0–96.0 wt%) as investigational variables, overlay sampling uniform design (OSUD) was employed to construct a high-quality dataset for model development. The random forest (RF) model was used to classify the preparation conditions. Then four models of artificial neural network, RF, gradient boosted regression trees (GBRT), and XGBoost were developed to predict the basic properties of the composite cryogels. The results showed that the RF model achieved an accurate three-class classification of preparation conditions. Among the four models, the GBRT model exhibited the best predictive performance of the basic properties, with the mean absolute percentage error of 16.04 %, 0.85 %, and 2.44 % for permeability, effective porosity, and height of theoretical plate (1.0 cm/min), respectively. Characterization results of the representative pHEMA-PVA-BC composite cryogel showed an effective porosity of 81.01 %, a permeability of 1.20 × 10−12 m2, and a range of height of theoretical plate between 0.40–0.49 cm at flow velocities of 0.5–3.0 cm/min. These indicate that the pHEMA-PVA-BC cryogel was an excellent material with supermacropores, low flow resistance and high mass transfer efficiency. Furthermore, the model output demonstrates that the alteration of the proportions of PVA (0.2–3.5 wt%) and BC (0.1–1.5 wt%) components in composite cryogels resulted in significant changes in the material basic properties. This work represents an attempt to efficiently design and prepare target composite cryogels using machine learning and providing valuable insights for the efficient development of polymers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.