Abstract

HypothesisDeveloping materials for thermally driven adsorption chillers and adsorption heat pumps is a growing research field due to the potential of these technologies to address up to 50% of the world’s total energy demand. These materials must be abundant, easy to synthesize, hydrophilic, and low in cost. Bare carbon materials are hydrophobic and therefore usually not considered for these applications. However, by introducing heteroatoms and tuning their porosity, the hydrophilicity of carbonaceous networks can be increased significantly. ExperimentalHerein, a series of highly nitrogen doped carbonaceous materials (CNs) have been synthesized by submitting uric acid to heat treatment at different temperatures in the presence of an inorganic salt mix as solvent and pore template. The effect of the thermal treatment on the materials composition, pore network, and water sorption capability has been studied. FindingsAt 800 °C, a nitrogen depleted carbonaceous material with a maximal water uptake of 1.38gH2O g−1 is obtained. Condensation at 750 °C creates an ultra-hydrophilic CN with a water uptake of 0.8 gH2O g−1 at already much lower partial pressures. While the maximum uptake is mainly ascribed to the mesopore volume of the material, the differences in hydrophilicity can be controlled by functionality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.