Abstract
To investigate the slag permeation to packed bed of carbonaceous materials, the measurement of molten slag’s densities, surface tensions and dynamic contact angle on carbonaceous materials at relatively low temperatures (from 1 673 to 1 773 K) are carried out by applying the sessile droplet method. The interfacial compositions of slags and carbonaceous materials were examined by SEM/EDX. SiC at carbonaceous material surface was not observed. The variation of measured density, contact angle and surface tension with time were found to be almost negligible with given slag composition and at given temperature. It is reported that carbonaceous material wettability at the temperature of more than 1 873 K was strongly dependent on the slag composition as well as carbon properties. The almost constant contact angel with time in this study can be attributed to the negligible formation of SiC at carbonaceous material surface.The slag permeation model has been developed along with the measurement of physical properties. The maximum retention height of liquid layer on the sphere packing layer is expressed by HC=A/LC+LC/2, where A is constant and HC and LC are the dimensionless slag layer retention height and the dimensionless sphere's diameter, respectively. Slag layer retention height on the carbonaceous material packing layer is evaluated using the measured physical properties. The proposed characteristic length λ (=√(−γL cos θ/ρℊ)) in the model can be used to characterize the slag permeation behaviour.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.