Abstract

The growing use of high-power and integrated electronic devices has created a need for thermal conductive adhesives (TCAs) with high thermal conductivity (TC) to manage heat dissipation at the interface. However, TCAs are often limited by contact thermal resistance at the interface between materials. In this study, we synthesized MXene@Ag composites through a direct in situ reduction process. The Ag nanoparticles (Ag NPs) generated by the reduction of the MXene interlayer and surface formed effective thermally conductive pathways with Ag flakes within an epoxy resin matrix. Various characterization analyses revealed that adding MXene@Ag composites at a concentration of 3 wt % resulted in a remarkable TC of 40.80 W/(m·K). This value is 8.77 times higher than that achieved with Ag flakes and 7.9 times higher than with MXene filler alone. The improved TC is attributed to the sintering of the in situ reduced Ag NPs during the curing process, which formed a connection between MXene (a highly conductive material) and the Ag flakes, thereby reducing contact thermal resistance. This reduction in contact thermal resistance significantly enhanced the TC of the thermal interface materials (TIMs). This study presents a novel approach for developing materials with exceptionally high TC, opening new possibilities for the design and fabrication of advanced thermal management systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call