Abstract

We have obtained ultrahigh room-temperature (RT) hole Hall and effective mobility in Si0.3Ge0.7/Ge/Si0.3Ge0.7 heterostructures with very small parallel conduction. Reducing parallel conduction was achieved by employing Sb doping in Si0.3Ge0.7 buffer layers, which drastically increased RT hole Hall mobility up to 2100 cm2/V s in the strained Ge channel modulation-doped structures and improved device characteristics of the p-type metal–oxide–semiconductor field-effect transistors with the strained Ge channel. The peak effective mobility reached to 2700 cm2/V s at RT, which was much higher than the bulk Ge drift mobility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call